GREEN AND SMART BUILDINGS

Offe	ring E	Branch	es	CE	ND C						Caralit			2
Course Category:				HONORS						т	Credits:			3
Course Type:				Theory							Lecture-Tutorial- Practical:		3-0-0	
Prerequisites:				Nil							Continuous Evaluation:		30	
											Semester End Evaluation:			70
											Total Marks: 1			00
		comes												
		sful co						ent will	l be ab	le to:				17/
$\frac{CO1}{CO2}$		trate th		-										K.
CO2		pt Ren												K.
CO3 CO4	Dom	lement Ionstra	to Act	nation	achnic	ques n	n Duild	ings.						K.
C04 C05		ose app							1					K.
105									hieven	nent of 1	Program	n Auteo	mes	Γ.
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO
CO1		2	2			2	2							2
CO2		2	2			2	2				1	1		2
CO3		3	3			2	2							2
CO4		2	2			2	2							2
CO5		2	2			2	2							2
Avg.		2	2			2	2							2
UNIT	•1 su re m	buildings in India, certification of green buildings. Criteria for rating – sustainability. Depleting natural resources of building materials; renewable and recyclable resources; energy efficient materials; green cement, biodegradable materials, smart materials, engineering evaluation of these materials. Case study. SOURCES OF ENERGY											COI	
UNIT	-2 R gl E	enewal olar, hy lobal sc mission	ble and ydro, g cenario n: Fore	l non-r geother with r ecastin	renewa mal so efereno g, con	ources; ce to de trol of	poter emand carbo	ntial of and su n emis	f these pply ir sion, a	source India. I ir quali	oleum, n s, hazaro Energy a ty and it mission.	ds, pollu rises. Ca ts monit	ution; arbon	CO2
UNIT	·3 hi C	carbon foot print; environmental issues, minimizing carbon emission. INTELLIGENT BUILDINGS Intelligent buildings-Building automation-Smart buildings- Building services in high rise buildings-Green buildings-Energy efficient buildings for various zones- Case studies of residence, office buildings and other buildings in each zones. Case Study.							CO3					
	A A	ACTUATOR TECHNIQUES Actuator and actuator materials – Piezoelectric and Electrostrictive Material – Magneto structure Material – Shape Memory Alloys – Electrorheological Fluids– Electromagnetic actuation – Role of actuators and Actuator Materials.							CO					
UNIT			nagneti	ic actu	ation –	Role	of actu	ators a					ulus–	

Page 264 of 278

Biom	imetic Sensors, Optical Interference Sensors Thermo-, light-, and stimulus-				
respo	nsive smart materials.				
	Learning Resources				
Text Books	 Sustainable Construction , Charles J. Kibert., Third Edition, ISBN-13: 978 0470904459, ISBN-10: 0470904453 Green Building A to Z, Jerry Yudelson. 				
Reference Books	 Advanced Technology for Smart buildings, James Sinopoli, ISBN-13: 978 1608078653, ISBN-10: 1608078655 				
e-Resources	1. https://link.springer.com/book/10.1007/978-981-10-1002-6				
Material	 https://www.elsevier.com/books/smart-buildings/casini/978-0-08-100635-1 				

Page **265** of **278**